WWW.KONF.X-PDF.RU
- , ,
 


Pages:     | 1 |   ...   | 3 | 4 ||

STAPHYLOCOCCUS EPIDERMIDIS ...

-- [ 5 ] --

103. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms./ E. a Izano [et al.] // Appl. Environ. Microbiol. 2008. V. 74. 2. P. 4706.

104. Effect of milk temperature and flow on the adherence of Staphylococcus epidermidis to stainless steel in amounts capable of biofilm formation/ Z. Jaglic [et al.] // Dairy Sci. Technol. 2011. V. 91. 3. P. 361372.

105. Jarvis, R.A. Effects of controlled fibronectin surface orientation on subsequent Staphylococcus epidermidis adhesion/ R.A. Jarvis, J.D. Bryers. // J. Biomed. Mater.

Res. - Part A. 2005. V. 75. P. 4155.

106. Bacterial interference caused by autoinducing peptide variants./ G. Ji [et al.] // Science. 1997. V. 276. P. 20272030.

107. The binding of calcium to the B-repeat segment of SdrD, a cell surface protein of Staphylococcus aureus/ E. Josefsson [et al.] // J Biol Chem. 1998. V. 273. P.

3114531152.

108. Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and teflon/ B.A. Jucker [et al.] // J. Bacteriol. 1996. V.

178. P. 54725479.

109. EDTA as a potential agent preventing formation of Staphylococcus epidermidis biofilm on polichloride vinyl biomaterials/ M. Juda [et al.] // Ann. Agric. Environ. Med.

2008. V. 15. P. 237241.

110. New trends in peptide-based anti-biofilm strategies: a review of recent achievements and bioinformatic approaches / Jorge [et al.] // Biofouling. 2012. V.

28. 10. P. 1033-61

111. Adhesion as an interplay between particle size and surface roughness/ J. Katainen [et al.] // J. Colloid Interface Sci. 2006. V. 304. P. 524529.

112. Katsikogianni, M. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions./ M.

Katsikogianni, Y.F. Missirlis. // Eur. Cell. Mater. 2004. V. 8. P. 3757.

113. Bacterial adherence to titanium surface coated with human serum albumin./ T.J.

Kinnari [et al.] // Otol. Neurotol. 2005. V. 26. 3. P. 3804.

114. Effect of zeta potential value on bacterial behavior during electrophoretic separation./ E. Kodziska [et al.] // Electrophoresis. 2010. V. 31. 9. P.

15906.

115. Alcoholic ingredients in skin disinfectants increase biofilm expression of Staphylococcus epidermidis./ J.K.-M. Knobloch [et al.] // J. Antimicrob. Chemother. 2002. V. 49. P. 683687.

116. Biofilms of clinical strains of Staphylococcus that do not contain polysaccharide intercellular adhesin./ G. Kogan [et al.] // FEMS Microbiol. Lett. 2006. V. 255. P.

1116.

117. Staphylococcus quorum sensing in biofilm formation and infection./ K.-F.F. Kong [et al.] // Int. J. Med. Microbiol. 2006. V. 296. 2-3. P. 1339.

118. Kuusela, P. Fibronectin binds to Staphylococcus aureus/ P. Kuusela. // Nature. 1978. V. 276. 5689. P. 718720.

119. Shear-dependent inhibition of granulocyte adhesion to cultured endothelium by dextran sulfate./ K. Ley [et al.] // Blood. 1989. V. 73. 5. P. 13241330.

120. Shear stress affects the kinetics of Staphylococcus aureus adhesion to collagen./ Z.J. Li [et al.] // Biotechnol. Prog. 2000. V. 16. 6. P. 108690.

121. Involvement of iron in biofilm formation by Staphylococcus aureus./ M.-H. Lin [et al.] // PLoS One. 2012. V. 7. 3. P. e34388.

122. Adhesion of Staphylococcus epidermidis to biomaterials is inhibited by fibronectin and albumin./ J.C. Linnes [et al.] // J. Biomed. Mater. Res. A. 2012. V. 100. 8.

P. 19901997.

123. Giant extracellular matrix binding protein expression in Staphylococcus epidermidis is regulated by biofilm formation and osmotic pressure./ J.C. Linnes [et al.] // Curr. Microbiol. 2013. V. 66. 6. P. 62733.

124. Hydrophobic and electrostatic parameters in bacterial adhesion - Dedicated to Werner Stumm for his 65th birthday/ M.C.M. van Loosdrecht [et al.] // Aquat. Sci. 1990. V. 52. P. 103114.

125. Electrophoretic Mobility and Hydrophobicity as a Measure To Predict the Initial Steps of Bacterial Adhesion/ M.C.M. van Loosdrecht [et al.] // Appl. Environ.

Microbiol. 1987. V. 53. 8. P. 18981901.

126. Lowy, F.D. Staphylococcus aureus infections./ F.D. Lowy. // N. Engl. J. Med. 1998. V. 339. 8. P. 52032.

127. The terminal A domain of the fibrillar accumulation-associated protein (Aap) of Staphylococcus epidermidis mediates adhesion to human corneocytes./ R.L. Macintosh [et al.] // J. Bacteriol. 2009. V. 191. 22. P. 700716.

128. Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence for functional relation to intercellular adhesion./ D. Mack [et al.] // Infect. Immun. 1992. V. 60. P. 2048 2057.

129. Mack, D. Molecular mechanisms of Staphylococcus epidermidis biofilm formation/ D. Mack. // J Hosp Infect. 1999. V. 43 Suppl. P. S11325.

130. Staphylococcus epidermidis biofilms:Functional molecules, relation to virulence, and vaccine potential/ D. Mack [et al.] // Top. Curr. Chem. 2009. V. 288. P. 157 182.

131. Mattick, A. Further observations on an inhibitory substance (nisin) from lactic streptococci/ A. Mattick and A.Hirsch // Lancet. 1947. V. 12. P. 58.

132. Marambio-Jones, C. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment/ C. Marambio-Jones, E.M.V. Hoek // J. Nanoparticle Res. 2010. V. 12. 5. P. 15311551.

133. The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin./ D. McKenney [et al.] // Infect. Immun. 1998. V. 66. 10. P. 471120.

134. Biofilm formation on stainless steel by Staphylococcus epidermidis in milk and influence of glucose and sodium chloride on the development of ica-mediated biofilms/ E. Michu [et al.] // Int. Dairy J. 2011. V. 21. 3. P. 179184.

135. Effect of calcium ions on enteropeptidase catalysis/ A.G. Mikhailova [et al.] // Biochem. 2005. V. 70. P. 11291135.

136. Impact of nano-topography on bacterial attachment/ N. Mitik-Dineva [et al.] // Biotechnol. J. 2008. V. 3. P. 536544.

137. Navarre, W.W. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope./ W.W. Navarre, O. Schneewind. // Microbiol. Mol.

Biol. Rev. 1999a. V. 63. 1. P. 174229.

138. Neu, T.R. Bacterial polymers: physicochemical aspects of their interactions at interfaces./ T.R. Neu, K.C. Marshall. // J. Biomater. Appl. 1990. V. 5. P. 107133.

139. Japanese features of native valve endocarditis caused by coagulase-negative staphylococci: Case reports and a literature review/ Y. Nishizaki [et al.] // Intern. Med.

2013. V. 52. P. 567572.

140. Effect of alkaline pH on staphylococcal biofilm formation./ A. Nostro [et al.] // APMIS. 2012. V. 120. 9. P. 73342.

141. Biofilm formation as microbial development/ G. O Toole [et al.] // Annu. Rev.

Microbiol. 2000. V. 54. P. 4979.

142. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectinbinding proteins, FnBPA and FnBPB./ E. ONeill [et al.] // J. Bacteriol. 2008. V.

190. 11. P. 383550.

143. Bacterial adherence to bioinert and bioactive materials studied in vitro./ M. Oga [et al.] // Acta Orthop. Scand. 1993. V. 64. P. 273276.

144. The role of hydrophobicity in bacterial adhesion/ R. Oliveira [et al.] // Bioline. 2001. P. 1122.

145. Staphylococcus epidermidis agr quorum-sensing system: signal identification, cross talk, and importance in colonization/ M. Olson [et al.] // J. Bacteriol. 2014. V. 196. P. 348293.

146. Otto, M. Staphylococcus epidermidis the accidental pathogen./ M. Otto. // Nat.

Rev. Microbiol. 2009. V. 7. 8. P. 55567.

147. Human host defense peptide LL-37 prevents bacterial biofilm formation/ J.

Overhage [et al.] // Infect. Immun. 2008. V. 76. P. 41764182.

148. The effects of magnesium, calcium and EDTA on slime production by Staphylococcus epidermidis strains./ N. Ozerdem Akpolat [et al.] // Folia Microbiol.

(Praha). 2003. V. 48. 5. P. 649653.

149. Modulation of adherence of coagulase-negative staphylococci to Teflon catheters in vitro./ A. Pascual [et al.] // Eur. J. Clin. Microbiol. 1986. V. 5. P. 518522.

150. S. epidermidis biofilm formation: Effects of biomaterial surface chemistry and serum proteins/ J.D. Patel [et al.] // J. Biomed. Mater. Res. - Part A. 2007. V. 80. P. 742751.

151. MSCRAMM-mediated adherence of microorganisms to host tissues./ J.M. Patti [et al.] // Annu. Rev. Microbiol. 1994. V. 48. P. 585617.

152. Paul, J. Effects of antimetabolites on the adhesion of an estuarine Vibrio sp. to polystyrene./ J. Paul. // Appl. Environ. Microbiol. 1984. V. 48. 5. P. 924929.

153. Paul, J.H. Evidence for Separate Adhesion Mechanisms for Hydrophilic and Hydrophobic Surfaces in Vibrio proteolytica/ J.H. Paul, W.H. Jeffrey. // Appl. Environ.

Microbiol. 1985. V. 50. 2. P. 431437.

154. Adhesion of staphylococci to chemically modified and native polymers, and the influence of preadsorbed fibronectin, vitronectin and fibrinogen./ M. Paulsson[et al.] // Biomaterials. 1993. V. 14. P. 845853.

155. Tetrasodium EDTA as a novel central venous catheter lock solution against biofilm/ S. Percival [et al.] // Infect. Control 2005. V. 26. 6. P. 515519.

156. Surface free energy effect on bacterial retention/ C.I. Pereni [et al.] // Colloids Surfaces B Biointerfaces. 2006. V. 48. P. 143147.

157. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces./ S. Pogodin [et al.] // Biophys. J. 2013. V. 104. 4. P. 835840.

158. Proctor, R. a. Fibronectin: a brief overview of its structure, function, and physiology./ R. a Proctor. // Rev. Infect. Dis. 1987. V. 9 Suppl 4. P. S317321.

159. Formation and properties of in vitro biofilms of ica-negative Staphylococcus epidermidis clinical isolates/ Z. Qin [et al.] // J. Med. Microbiol. 2007a. V. 56. P.

8393.

160. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis./ Z. Qin [et al.] // Microbiology. 2007b. V. 153. Pt 7. P. 2083 2092.

161. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis/ S. Rachid [et al.] // Antimicrob. Agents Chemother. 2000. V. 44. 12. P. 33573363.

162. Induction of Staphylococcus epidermidis biofilm formation by environmental factors: the possible involvement of the alternative transcription factor sigB./ S. Rachid [et al.] // Adv. Exp. Med. Biol. 2000. V. 485. P. 159166.

163. Identification of Antimicrobial Peptides and Immobilization Strategy Suitable for a Covalent Surface Coating with Biocompatible Properties/ K. Rapsch [et al.] // Bioconjug. Chem. 2014. V. 25. P. 308319.

164. Surface Physicochemistry and Ionic Strength Affects eDNAs Role in Bacterial Adhesion to Abiotic Surfaces./ V.R. Regina [et al.] // PLoS One. 2014. V. 9. 8. P. e105033.

165. Different patterns of biofilm formation in Staphylococcus aureus under foodrelated stress conditions/ T.M. Rode [et al.] // Int. J. Food Microbiol. 2007. V. 116.

P. 372383.

166. Detection of virulence-associated genes not useful for discriminating between invasive and commensal Staphylococcus epidermidis strains from a bone marrow transplant unit./ H. Rohde [et al.] // J. Clin. Microbiol. 2004. V. 42. 12. P.

56149.

167. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases/ H. Rohde [et al.] // Mol. Microbiol. 2005. V. 55. 6. P. 188395.

168. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections/ H. Rohde [et al.] // Biomaterials. 2007. V. 28. 9. P.

171120.

169. Inhibitory effect of disodium EDTA upon the growth of Staphylococcus epidermidis in vitro: relation to infection prophylaxis of Hickman catheters./ J.L. Root [et al.] // Antimicrob. Agents Chemother. 1988. V. 32. 11. P. 162731.

170. Rosenbach, F.J. Mikroorganismen bei den Wundinfections-Krankheiten des Menschen. / F.J. Rosenbach / Weisbaden, Germany, 1884. 1122 p.

171. Adherence of bacteria to hydrocarbons: A simple method for measuring cellsurface hydrophobicity/ M. Rosenberg [et al.] // FEMS Microbiol. Lett. 1980. V. 9.

1. P. 2933.

172. Extracellular Carbohydrate-Containing Polymers of a Model Biofilm-Producing Strain, Staphylococcus epidermidis RP62A/ I. Sadovskaya [et al.] // Infect. Immun. 2005. V. 73. 5. P. 300717.

173. Sandiford, S. Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against Staphylococci./ S. Sandiford, M. Upton.

// Antimicrob. Agents Chemother. 2012. V. 56. 3. P. 153947.

174. Sang, Y. Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics./ Y. Sang, F. Blecha. // Anim. Health Res. Rev. 2008. V. 9. 2. P.

22735.

175. Adherence of streptococci to surface-modified glass./ N. Satou [et al.] // J. Gen.

Microbiol. 1988. V. 134. P. 12991305.

176. Effects of Substratum Topography on Bacterial Adhesion./ T. Scheuerman [et al.] // J. Colloid Interface Sci. 1998. V. 208. P. 2333.

177. Influence of fibronectin on the adherence of Staphylococcus epidermidis to coated and uncoated intraocular lenses/ A.C. Schroeder [et al.] // J. Cataract Refract. Surg. 2008. V. 34. P. 497504.

178. Shai, Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides./ Y. Shai. // Biochim. Biophys. Acta. 1999. V. 1462. 1-2. P. 5570.

179. Adherence ability of Staphylococcus epidermidis on prosthetic biomaterials: an in vitro study./ T. Shida [et al.] // Int. J. Nanomedicine. 2013. V. 8. P. 395561.

180. Shukla, S.K. Effect of calcium on Staphylococcus aureus biofilm architecture: a confocal laser scanning microscopic study./ S.K. Shukla, T.S. Rao. // Colloids Surf. B.

Biointerfaces. 2013. V. 103. 2010. P. 448454.

181. Antimicrobial-Resistant Pathogens Associated with Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 20092010. / Sievert D.M. [et al.] // Infection Control and Hospital Epidemiology. 2013. V. 34. . 1. . 114.

182. Influence of temperature and surface kind on biofilm formation by Staphylococcus aureus from food-contact surfaces and sensitivity to sanitizers/ Q.G. da Silva Meira [et al.] // Food Control. 2012. V. 25. 2. P. 469475.

183. R chi-01, a new family of oxazolidinones that overcome ribosome-based linezolid resistance./ E. Skripkin [et al.] // Antimicrob. Agents Chemother. 2008. V. 52. 10. P. 35503557.

184. Steinberger, R.E. Extracellular DNA in Single- and Multiple-Species Unsaturated Biofilms / R.E. Steinberger, P.A. Holden. // Appl. Environ. Microbiol. 2005. V. 71.

9. P. 5404-10.

185. Influence of dynamic conditions on biofilm formation by staphylococci./ S.

Stepanovi [et al.] // Eur. J. Clin. Microbiol. Infect. Dis. 2001. V. 20. P. 502504.

186. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. / S.

Stepanovi [et al.] // APMIS. 2007. V. 115. P. 891899.

187. Role of environmental and antibiotic stress on Staphylococcus epidermidis biofilm microstructure./ E.J. Stewart [et al.] // Langmuir. 2013. V. 29. P. 701724.

188. Biofilm material properties as related to shear-induced deformation and detachment phenomena./ P. Stoodley [et al.] // J. Ind. Microbiol. Biotechnol. 2002. V. 29. 6. P. 3617.

189. Inhibition of biofilm formation by monoclonal antibodies against Staphylococcus epidermidis RP62A accumulation-associated protein./ D. Sun [et al.] // Clin. Diagn.

Lab. Immunol. 2005. V. 12. P. 93100.

190. Understanding effects of viscosity in the BioFlux system [ ].

URL: http://support.fluxionbio.com/entries/26384038-Viscosity-Understanding-effectsof-viscosity-in-the-BioFlux-system ( : 20.09.2014).

191. Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis./ H. Tang [et al.] // J. Biomed. Mater. Res.

A. 2009. V. 88. 2. P. 454463.

192. Tetz, G.V. Effect of DNase and antibiotics on biofilm characteristics / G.V. Tetz N.

K. Artemenko, V.V. Tetz // Antimicrob. Agents Chemother. 2009. V. 53. 3. P.12041209.

193. The Antimicrobial Peptide Database (APD) [ ]. URL:

http://aps.unmc.edu/AP/main.php ( : 20.10.2014).

194. Tolker-Nielsen, T. Spatial Organization of Microbial Biofilm Communities/ T.

Tolker-Nielsen, S. Molin. // Microb Ecol. 2000. V. 40. P. 7584.

195. SarA Is an Essential Positive Regulator of Staphylococcus epidermidis Biofilm Development / M.. Tormo [et al.] // J. Bacteriol. 2005. J. Bacteriol. 2005. V.187. P. 2348 56.

196. Vaara, M. New approaches in peptide antibiotics / M. Vaara // Curr. Opin.

Pharmacol. 2009. V. 9. P. 571576.

197. Bacterial surface properties of clinically isolated Staphylococcus epidermidis strains determine adhesion on polyethylene./ K. Vacheethasanee [et al.] // J. Biomed.

Mater. Res. 1998. V. 42. 3. P. 42532.

198. Vadyvaloo, V. Molecular genetics of Staphylococcus epidermidis biofilms on indwelling medical devices./ V. Vadyvaloo, M. Otto. // Int. J. Artif. Organs. 2005. V. 28. 11. P. 106978.

199. Role of fibronectin in staphylococcal colonisation of fibrin thrombi and plastic surfaces./ P. Valentin-Weigand [et al.] // J. Med. Microbiol. 1993. V. 38. 2. P.

905.

200. Expression of Biofilm-Associated Genes in Staphylococcus epidermidis during In Vitro and In Vivo Foreign Body Infections/ S.J. Vandecasteele [et al.] // J. Infec.Diseas.

2003. P. 188.

201. Adsorption of fibronectin onto polymethylmethacrylate and promotion of Staphylococcus aureus adherence./ P.E. Vaudaux [et al.] // Infect. Immun. 1984. V.

45. 3. P. 76874.

202. Nosocomial infection and related risk factors in a general surgery service: a prospective study/ P. Vazquez-Aragon [et al.] // J.Infect. 2003. V. 46. P. 1722.

203. Ultrastructural organization and regulation of a biomaterial adhesin of Staphylococcus epidermidis/ G.J.C. Veenstra [et al.] // J. Bacteriol. 1996. V. 178. P. 537541.

204. Vinh, D.C. Device-related infections: a review./ D.C. Vinh, J.M. Embil. // J. Long.

Term. Eff. Med. Implants. 2005. V. 15. P. 467488.

205. [The effect of valinomycin and nigericin on the efficacy of bacteriophage infection of staphylococcal cells] / A.I. Vinnikov [et al.] // Zh. Mikrobiol. Epidemiol.

Immunobiol. 1989. 2. P. 1720.

206. Cell-penetrating and cell-targeting peptides in drug delivery / E. Vives [et al.] // Biochim. Biophys. Acta - Rev. Cancer. 2008. V. 1786. P. 126138.

207. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces./ L. Vroman [et al.] // Blood. 1980. V. 55. P. 156159.

208. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system./ C. Vuong [et al.] // Cell. Microbiol. 2004. V. 6. 3. P. 269275.

209. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus./ C. Vuong . // J. Infect. Dis. 2000. V. 182. 6. P.

16881693.

210. Vuong, C. Staphylococcus epidermidis infections./ C. Vuong, M. Otto. // Microbes Infect. Inst. Pasteur. 2002. V. 4. 4. P. 481489.

211. Staphylococcus epidermidis adhesion to hydrophobic biomedical polymer is mediated by platelets./ I.W. Wang [et al.] // J. Infect. Dis. 1993. V. 167. 2. P.

329336.

212. Wiencek, K.M. Effects of substratum wettability and molecular topography on the initial adhesion of bacteria to chemically defined substrata/ K.M. Wiencek, M. Fletcher.

// Biofouling. 1997. V. 11. P. 293311.

213. Identification of a Fibronectin-Binding Protein from Staphylococcus epidermidis/ R.J. Williams [et al.] // Infect. Immun. 2002. V. 70. 12. P. 68056810.

214. Wilson, M. Bacterial biofilms and human disease./ M. Wilson. // Sci. Prog. 2001.

V. 84. P. 235254.

215. Wilson, M. Medical implications of biofilms / M. Wilson, D. Devine / Gambridge university press, 2003. 654 p.

216. Wimley, W. C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model / W. C.Wimley // ACS Chem. Biol. 2010. V. 5. P. 905917.

217. Is hospital-acquired intravascular catheter-related sepsis associated with outbreak strains of coagulase-negative staphylococci?/ T. Worthington [et al.] // J. Hosp. Infect. 2000. V. 46. P. 130134.

218. Biofilms in Wastewater Treatment: An Interdisciplinary Approach / S. Wuertz [et al.] / 2008. 424 p.

219. Xu, L.-C. Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation./ L.-C. Xu, C.A. Siedlecki. // Acta Biomater. 2012a. V. 8. 1. P. 7281.

220. Xu, L.-C. Effects of Plasma Proteins on Staphylococcus epidermidis RP62A Adhesion and Interaction with Platelets on Polyurethane Biomaterial Surfaces/ L.-C.

Xu, C.A. Siedlecki. // J. Biomater. Nanobiotechnol. 2012b. V. 03. 04. P. 487 498.

221. Development and application of loop-mediated isothermal amplification assays on rapid detection of various types of staphylococci strains./ Z. Xu [et al.] // Food Res. Int.

2012. V. 47. 2. P. 166173.

222. Prevention of biofilm formation on titanium surfaces modified with conjugated molecules comprised of antimicrobial and titanium-binding peptides./ M. Yoshinari [et al.] // Biofouling. 2010. V. 26. P. 103110.

223. Yuan, Y. Contact angle and wetting properties / Y. Yuan, T.R. Lee. // Surface Science Techniques Springer Series in Surface Sciences. / by ed. G. Bracco, B. Holst.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

224. Measurement of polysaccharides and proteins in biofilm extracellular polymers / X. Zhang [et al.] // Water Science and Technology. 1998. P. 345348.

225. Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen/ W. Ziebuhr [et al.] // Int. J. Antimicrob. Agents. 2006. V. 28. P. 1420.

226. A Microtiter plate assay for Staphylococcus aureus biofilm quantification at various pH levels and hydrogen peroxide supplementation/ T. Zmantar [et al.] // New Microbiol. 2010. V. 33. P. 137145.

227. Zobell, C.E. The Effect of Solid Surfaces upon Bacterial Activity./ C.E. Zobell. // J. Bacteriol. 1943. V. 46. P. 3956.



Pages:     | 1 |   ...   | 3 | 4 ||

:

- 03.02.08 () ( ) : , .. 2015 . ...

- 03.02.03 ...

5N 03.02.02 ..., . . 20 1. 2. 2.1. 2.2. 2.3. ...

( ) 25.00.36 ( ) - - 201...

- , 03.02.02 , . . -20 ...

: 03.02.08. : ,...

- 14.03.09 , ...

. 14.02.02 : , , 20 ...

06.02.02 , , , : ...

03.02.10 ...

- 03.02.13- : , , .. -2015 1. ( ) 1.1. 1.2....

03.02.08 : , .. -2015 .. 1 .. 1.1. 1.2. ...

- 06.02.10 , ; 06.02.08 , . ...

: 06.01.07 06.01.01 ...

- 14.01.07 ...

ͨ , Coregonus peled (Gmelin, 1789) 03.02.08 () 03.02.06 :...

, - 06.01.05 ...

13.00.01 , : , ,...

- 25.00.08 ,...

03.01.00 : -. , , ... .. ...







 
<<     |    
2016 www.konf.x-pdf.ru - - , ,

, .
, , , , 1-2 .